Minimum trajectory error training for deep neural networks, combined with stacked bottleneck features
نویسندگان
چکیده
Recently, Deep Neural Networks (DNNs) have shown promise as an acoustic model for statistical parametric speech synthesis. Their ability to learn complex mappings from linguistic features to acoustic features has advanced the naturalness of synthesis speech significantly. However, because DNN parameter estimation methods typically attempt to minimise the mean squared error of each individual frame in the training data, the dynamic and continuous nature of speech parameters is neglected. In this paper, we propose a training criterion that minimises speech parameter trajectory errors, and so takes dynamic constraints from a wide acoustic context into account during training. We combine this novel training criterion with our previously proposed stacked bottleneck features, which provide wide linguistic context. Both objective and subjective evaluation results confirm the effectiveness of the proposed training criterion for improving model accuracy and naturalness of synthesised speech.
منابع مشابه
A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines
Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...
متن کاملModeling of measurement error in refractive index determination of fuel cell using neural network and genetic algorithm
Abstract: In this paper, a method for determination of refractive index in membrane of fuel cell on basis of three-longitudinal-mode laser heterodyne interferometer is presented. The optical path difference between the target and reference paths is fixed and phase shift is then calculated in terms of refractive index shift. The measurement accuracy of this system is limited by nonlinearity erro...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملAlternative Approaches to Neural Network Based Speaker Verification
Just like in other areas of automatic speech processing, feature extraction based on bottleneck neural networks was recently found very effective for the speaker verification task. However, better results are usually reported with more complex neural network architectures (e.g. stacked bottlenecks), which are difficult to reproduce. In this work, we experiment with the so called deep features, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015